URL: LeetCode Problem
Problem Description
There are 3n piles of coins of varying size, you and your friends will take piles of coins as follows:
- In each step, you will choose any 3 piles of coins (not necessarily consecutive).
- Of your choice, Alice will pick the pile with the maximum number of coins.
- You will pick the next pile with the maximum number of coins.
- Your friend Bob will pick the last pile.
- Repeat until there are no more piles of coins.
Given an array of integers piles where piles[i] is the number of coins in the ith pile.
Return the maximum number of coins that you can have.
Examples:
- Example 1: Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal.
Constraints:
- 3 <= piles.length <= 105
- piles.length % 3 == 0
- 1 <= piles[i] <= 104
Python3 Solution
class Solution:
def maxCoins(self, piles: List[int]) -> int:
piles.sort()
q = deque(piles)
total = 0
while len(q) > 0:
q.pop()
total += q.pop()
q.popleft()
return total